

DRAGONITE[™]

Halloysite: Reinforcing halogen free fire retardant for plastics from PE to PEEK

AMI – Fire Retardants in Plastics Denver Colorado June 14th 2012

Agenda

- Applied Minerals
- Halloysite structure & properties
- Enhancing plastics
- Case study: PET pallets
- Commercial aspects
- Conclusions

Applied Minerals at a Glance

- US based publicly traded SEC reporting company. Ticker: AMNL
- Owner and operator of the Dragon Mine Halloysite Clay Deposit in Utah USA
- Over 30 years of proven reserves
- Product grades marketed under the *Dragonite[™]* trade name
- World renowned technical experts in geology, minerals characterization, plastics and materials
- Completed a \$ 6M geologic evaluation of the Dragon Mine including Halloysite and Goethite nano iron oxide pigment
- Became commercial in 2010 with 30 000 tons annual capacity and expanding

Technology Description - What is Halloysite?

- Halloysite is a natural aluminosilicate clay with a hollow tubular morphology
- Naturally exfoliated morphology means no need to chemically separate particles and makes for easy dispersion
- Halloysite nanotubes typically have diameter ~50nm with lengths ranging from 1 to 2 microns giving an aspect ratio of ~20
- Traditional uses include fine china, fillers in paints and paper, food extenders, catalysts and molecular sieves

Dragonite Chemistry

Characterization

- XRD Mineralogy
- XRF Major element chemistry
- ICP-MS range of trace elements
- FTIR
- Surface area
- Porosity
- Brightness and colour
- Particle size distribution
- SEM and TEM morphology

Halloysite Property Overview

- Aluminosilicate mineral: Al₂Si₂O₅(OH)₄. nH₂O
- Molecular weight: 294.19
- CAS: 1332-58-7
- Density: 2.60 ± 0.03 gcm⁻³
- Refractive index at room temperature: 1.534, dried at 100°C 1.548
- Specific heat capacity: 0.92 kJkg⁻¹K⁻¹
- Thermal conductivity: 0.092 WK⁻¹m⁻¹
- Thermal diffusivity: 5.04 x 10⁻⁴ cm² sec⁻¹
- CTE: 10.0 ± 1.5 perpendicular to the layer, 6.0 ± 2.0 parallel
- Colorless and UV transparent
- pH in water 6.4-7.2
- Particle shape: 1-2 microns long, 50nm across, 15nm diameter hole
- Modulus ~130 GPa
- Surface area: 65-120 m²g⁻¹
- O Dragonite™ purity: 95-100%

Dragonite™ Intrinsic Properties and Applications

High aspect ratio

Reinforcement of plastics, elastomers, coatings etc.

High surface area

 Catalysts, adsorbents, carrier, elastomers, immobilization, nucleation of crystal growth and foam cell formation

Hollow

 Controlled release, thermal insulation, light-weighting, wicking, membranes, reverse osmosis

Bound water

Fire retardance, temperature indicator, foaming agent

Property See-Saw

- Isotropic fillers retain impact but do not reinforce
- Reinforcing fillers ruin impact resistance and elongation to break
- Halloysite reinforces and retains or improves impact and elongation
- This is possible due to shape, surface area and easy dispersibility

Agenda

- Applied Minerals
- Halloysite structure & properties
- Enhancing plastics
- Case study: PET pallets
- Commercial aspects
- Conclusions

The Challenge

Customer target is for a high-performance pallet:

- •Flexural Modulus ~1000 kpsi
- •Flexural Strength ~1800 psi
- ONotched Izod Impact resistance ~1 J/cm²
- OMFI ≥15 g/10 min due to existing mold
- Fire retardance to UL 2335
- Safe, non-migrating and halogen free FR requirement
- Starting point is Rynite 35% GF filled PET but unable to achieve mechanicals and UL 2335 with existing FR packages

Why Dragonite?

- Other solutions had failed to provide the answer
- Phosphorous-based systems plasticize
- Halogenated products not acceptable
- Mineral based FR like ATH and MDH not appropriate for PET
- Dragonite known to reinforce while retaining impact and providing FR

Experimental Plan

- Prepare a highly loaded Dragonite masterbatch in recycled PET copolymer that can be combined with commercial Rynite GF PET
- Pre-drying the Dragonite and good dispersion essential
- Selected Americhem due to their experience with hydrolytically unstable polymers, excellent dispersion ability and QC
- Dragonite has some reactivity so adding a surfactant or stabilizer can be beneficial
- In this case 2% RDP was chosen due to proven affinity to Dragonite and previously reported results (BCC 2011)
- The aim was to add the Dragonite masterbatch in the minimum amount needed to pass UL 2335

Dragonite Thermal Stability by TGA

Dragonite Solution

Property	PET 35%GF	PET 28%GF + 10% HNT	PET 23%GF + 16% HNT	PET 21%GF + 18% HNT
Flexural Modulus (kpsi)	1577	1115	1085	1026
Flexural Strength (psi)	31112	19849	19417	17643
Notched Izod (ft-lb/in)	1.58	0.75	0.89	0.71
Unnotched Izod (ft-lb/in)	13.4	8.1	9.2	7.2
MFI (g/10 min)	7		20	24
Char Density				1.485
Seconds to burn 5cm (need >180)	135	150	165	229

PET FR Development

- Reinforcing, halogen free flame retardant
- Good mechanicals in combination with glass fiber
- High water release temperature > 400°C means Dragonite is ideally suited to polymers processed at high temperature
- Char strength boosted with Dragonite[™] plus glass fiber
- Synergistic fluxing effect

Conclusions

- All mechanical targets met
- Dragonite is reinforcing so it was possible to replace a portion of the glass fiber and still have good strength and modulus
- Impact resistance was retained at an acceptable level
- By adding the Dragonite in recycled PET copolymer the flow was increased by 3 fold, essential for injection molding
- Fire retardance to UL 2335 certification anticipated (underway)
- Safe, non-migrating and halogen free FR requirement
- Working closely with the customer and using in-house testing with fast turn-around time we were able to meet the targets
- We continue to optimize this formulation while also extending this reinforcing FR masterbatch approach to PP, PA6 etc.

Agenda

- Applied Minerals
- Halloysite structure & properties
- Enhancing plastics
- Case study: PET pallets
- Commercial aspects
- Conclusions

Commercial Status

- Dragon Mine Halloysite deposit characterized and proven in 2010
- Commercialization status:
 - Nucleation of HDPE and PP for better mechanicals and reduced cost in injection molded parts and extruded profiles
 - The only reinforcing and halogen-free mineral fire retardant for engineering plastics (recent Samsung press release)
 - Reinforces foams, improves productivity and helps surface appearance
 - Several new developments in the pipeline

Availability

- Dragonite[™] brand high-purity Halloysite is commercially available from Applied Minerals
- Dragonite[™] is shipped directly from the Dragon Mine in Utah, USA
- Masterbatch concentrates are available as well as neat powder
- Supply is plentiful (>30 ktons) to support large-scale applications
- Samples are available to interested parties
- Technical support is also available

Thank You For Your Time

Q&A

