HMH - A NATURAL SOLUTION TO YOUR BURNING ISSUES

Dr. Chris DeArmitt FRSC
- HMH work by Stefan Viering
THE LKAB GROUP IN BRIEF

• World leading producer of upgraded iron ore
• Delivered 25.5 Million MT in 2013, plan to grow to 37 Million MT by 2017
• Two underground mines in Kiruna and Malmberget and open pit mining in Svappavaara
• Producer of 90% of EU’s iron ore
• ~4,400 employees
• 30 companies in 15 countries
 – E.g. Drilling, Concrete, Explosives, Railway, Harbour, Construction.
• Turnover 2013: SEK 23.65 Billion
FOCUS CREATES SPECIALISATION

We focus our R&D resources on mineral and application development in the areas of:

- Civil Engineering and Construction
- Polymers and Coatings
- Refractory and Foundry
MAGNIF – HIGH PURITY MAGNETITE
ROTARY KILN
MAGNETITE ORE

1. Density 5.2 g cm⁻³
2. Moh Hardness ~6
3. Semi-conductive
4. Thermally conductive
5. High specific heat capacity
6. Extremely pure

1. Sound deadening, weights
2. Solid surfaces
3. Anti-static, shielding, induction & microwave heatable
4. Lowers cycle time
5. Heat storage
6. Food contact approved
PHLOGOPITE MICA – VHAR REINFORCEMENT
MINERAL REINFORCEMENTS COMPARED

<table>
<thead>
<tr>
<th>Particle Dimensions (Malvern)</th>
<th>Talc</th>
<th>Calcined Clay</th>
<th>Wollastonite</th>
<th>Phlogopite Mica PW80</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{50}</td>
<td>12</td>
<td>3</td>
<td>3.5</td>
<td>37</td>
</tr>
<tr>
<td>D_{90}</td>
<td>40</td>
<td>10</td>
<td>13</td>
<td>95</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Very High</td>
</tr>
</tbody>
</table>
SEM OF PHLOGOPITE MICA PW80

Mag = 2.00 K X
WD = 12 mm
EHT = 5.00 kV
Detector = SE2
Photo No. = 685
REINFORCEMENT COMPARISON IN PA6

<table>
<thead>
<tr>
<th>Property</th>
<th>Talc 40%</th>
<th>Calcined Clay 40%</th>
<th>Wollastonite 40%</th>
<th>Phlogopite Mica 40%</th>
<th>GF 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Modulus (MPa)</td>
<td>7400</td>
<td>6120</td>
<td>5514</td>
<td>10370</td>
<td>11980</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>120</td>
<td>150</td>
<td>135</td>
<td>155</td>
<td>290</td>
</tr>
<tr>
<td>Tensile Modulus (MPa)</td>
<td>7470</td>
<td>6313</td>
<td>5450</td>
<td>11160</td>
<td>13215</td>
</tr>
<tr>
<td>Break Stress (MPa)</td>
<td>74</td>
<td>87</td>
<td>83</td>
<td>95</td>
<td>195</td>
</tr>
<tr>
<td>Break Strain (%)</td>
<td>2.8</td>
<td>6.4</td>
<td>8.4</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Unnotched Charpy (kJm⁻²)</td>
<td>28.5</td>
<td>80</td>
<td>No Break</td>
<td>29</td>
<td>79</td>
</tr>
<tr>
<td>Notched Charpy (kJm⁻²)</td>
<td>3.5</td>
<td>6.4</td>
<td>6.4</td>
<td>4.0</td>
<td>12.8</td>
</tr>
<tr>
<td>Shrinkage (%)</td>
<td>0.65</td>
<td>1.31</td>
<td>1.06</td>
<td>0.58</td>
<td>0.1</td>
</tr>
<tr>
<td>Shrinkage</td>
<td></td>
<td>(%)</td>
<td>0.97</td>
<td>1.66</td>
<td>1.64</td>
</tr>
<tr>
<td>Warpage (%)</td>
<td>0.32</td>
<td>0.35</td>
<td>0.58</td>
<td>0.29</td>
<td>0.88</td>
</tr>
</tbody>
</table>
REINFORCEMENT COMPARISON IN PA6

![LKAB Minerals logo](image)

<table>
<thead>
<tr>
<th>Property</th>
<th>GF25% Talc15%</th>
<th>GF 25% Clay 15%</th>
<th>GF 25% Wollastonite 15%</th>
<th>GF 25% Phlogopite Mica 15%</th>
<th>GF 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Modulus (MPa)</td>
<td>9843</td>
<td>9350</td>
<td>9080</td>
<td>10550</td>
<td>11980</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>210</td>
<td>213</td>
<td>226</td>
<td>231</td>
<td>290</td>
</tr>
<tr>
<td>Tensile Modulus (MPa)</td>
<td>11400</td>
<td>9950</td>
<td>10100</td>
<td>12200</td>
<td>13215</td>
</tr>
<tr>
<td>Break Stress (MPa)</td>
<td>140</td>
<td>144</td>
<td>144</td>
<td>165</td>
<td>195</td>
</tr>
<tr>
<td>Break Strain (%)</td>
<td>2.4</td>
<td>3.4</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Unnotched Charpy (kJm⁻²)</td>
<td>52.3</td>
<td>43.6</td>
<td>50.3</td>
<td>60</td>
<td>79</td>
</tr>
<tr>
<td>Notched Charpy (kJm⁻²)</td>
<td>7.4</td>
<td>5.6</td>
<td>6.9</td>
<td>8.6</td>
<td>12.8</td>
</tr>
<tr>
<td>Shrinkage = (%)</td>
<td>0.22</td>
<td>0.26</td>
<td>0.23</td>
<td>0.22</td>
<td>0.1</td>
</tr>
<tr>
<td>Shrinkage</td>
<td></td>
<td>(%)</td>
<td>0.91</td>
<td>0.99</td>
<td>1.04</td>
</tr>
<tr>
<td>Warpage (%)</td>
<td>0.69</td>
<td>0.73</td>
<td>0.81</td>
<td>0.59</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Note: LKAB Minerals data from accredited external laboratory.
ULTRACARB – NATURE’S OWN FLAME RETARDANT
HMH: A BLEND OF TWO MINERALS

Huntite: magnesium calcium carbonate

\[\text{Mg}_3\text{Ca} (\text{CO}_3)_4 + 1 \text{ kJ/g} \rightarrow 3\text{MgO} + \text{CaO} + 4\text{CO}_2 \]

Hydromagnesite: hydrated magnesium carbonate

\[\text{Mg}_5(\text{CO}_3)_4(\text{OH})_2 \cdot 4\text{H}_2\text{O} + 1 \text{ kJ/g} \rightarrow 5\text{MgO} + 4\text{CO}_2 + 5\text{H}_2\text{O} \]
THE THREE STAGE FR MECHANISM OF HMH
HYDROMAGNESITE & HUNTITE DECOMPOSITION

- **Residual Mass (%)**
- **Temperature**
 - Celsius: 0, 200, 400, 600, 800
 - Fahrenheit: 390, 750, 1110, 1470

Graph showing the decomposition of Hydromagnesite and Huntite at various temperatures.
TOTAL HEAT RELEASE OF HMH AND ATH

Data retrieved from 50kW cone calorimeter
PARTICLE MORPHOLOGY

HMH

ATH

Huntite
NATURAL HMH VERSUS SYNTHETIC ATH

<table>
<thead>
<tr>
<th></th>
<th>HMH</th>
<th>ATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Platy</td>
<td>Spherical</td>
</tr>
<tr>
<td>FR activity range</td>
<td>220°C – 700°C</td>
<td>180°C – 280°C</td>
</tr>
<tr>
<td>Evaporation enthalpy</td>
<td>-1000 kJ/kg</td>
<td>-1000 kJ/kg</td>
</tr>
<tr>
<td>Water release</td>
<td>>220°C</td>
<td>>180°C</td>
</tr>
<tr>
<td>Cementicious char</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bulk density (at feeding)</td>
<td>0.3g/cm³ (0.3g/cm³)</td>
<td>0.6 g/cm³ (0.4g/cm³)</td>
</tr>
<tr>
<td>BET surface</td>
<td>10m²/g (15m²/g)</td>
<td>4m²/g (7m²/g)</td>
</tr>
<tr>
<td>Processing temperature</td>
<td><220°C @ 1 bar</td>
<td><180°C</td>
</tr>
<tr>
<td>High shear kneading</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
THE FOUR-FLIGHTED BUSS KNEADER

BUSS
MX-Series
MX-30 SETUP

FR1 Polymer Additive FR2

FR3
KNEADER CONFIGURATION

Screw MX 30 l/d=22

Four-flighted

Screw MKS 30 l/d=20

Three-flighted
EVA + ULTRACARB LH3 + PATH

Ingredients

- 26.5% Elvax 265 A (EVA)
- 3.75% Compoline CO/LL (MAH)
- 6.5% Eltex PF6130 AA (LLDPE)
- 1.5% Silmaprocess AL 1142A (Processing aid)
- 0.75% Silmastab AE 1527 (Stabilizer)
- 30.5% UltraCarb LH3 (oil abs. 25 ml/100g)
- 30.5% fine pATH (oil abs. 30 ml/100g)

Instructions

Feed polymers, additives and processing aids in the first hopper of a Buss Co-Kneader MX-30, feed the UltraCarb LH3 in port 2, and the ATH in port 3. Let it run at 600 rpm and 15kg/h.

Tensile Strength: 11 MPa
Elongation @ Break: 230%
Dispersion: very good
LOI: 35.5
EVA + ULTRACARB LH3

Ingredients
26.5% Elvax 265 A (EVA)
3.75% Compoline CO/LL (MAH)
6.5% Eltex PF6130 AA (LLDPE)
1.5% Silmaprocess AL 1142A (Processing aid)
0.75% Silmastab AE 1527 (Stabilizer)
61.00% UltraCarb LH3

Tensile Strength: 13 MPa
Elongation @ Break: 186%
Dispersion: very good
LOI: 34.5

Instructions
Feed polymers, additives and processing aids in the first hopper of a Buss Co-Kneader MX-30 and split feed the UltraCarb LH3 in port 1+2 and let it run at 600 rpm and 15kg/h. Do not exceed 260°C (750rpm) as the EVA may start to degrade.
EVA + ULTRACARB LH3 + PLASTOMER

Ingredients

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0% Elvax 265 A (EVA)</td>
<td></td>
</tr>
<tr>
<td>6.5% Lucene LC180 (Plastomer)</td>
<td></td>
</tr>
<tr>
<td>3.75% Compoline CO/LL (MAH)</td>
<td></td>
</tr>
<tr>
<td>6.5% Eltex PF6130 AA (LLDPE)</td>
<td></td>
</tr>
<tr>
<td>1.5% Silmaprocess AL 1142A (Processing aid)</td>
<td></td>
</tr>
<tr>
<td>0.75% Silmastab AE 1527 (Stabilizer)</td>
<td></td>
</tr>
<tr>
<td>61.00% UltraCarb LH3</td>
<td></td>
</tr>
</tbody>
</table>

Instructions

Feed polymers, additives and processing aids in the first hopper of a Buss Co-Kneader MX-30 and split feed the UltraCarb LH3 in port 1+2 and let it run at 600rpm and 15kg/h.

Tensile Strength: 15 MPa
Elongation @ Break: 276%
Dispersion: very good
LOI: 32.5
CONCLUSIONS

• Natural mixtures of hydromagnesite and huntite are effective fire retardants

• Hydromagnesite is more active in the early stages of the fire providing an endothermic release of gas similar to ATH

• Huntite provides additional fire retardant activity not seen with ATH

• Varying the ratio of minerals allows tuning

• With proper processing, excellent FR and mechanical performance are possible in EBA, conventional EVA based cables or PVC

• Natural Mixtures of hydromagnesite and huntite offer much more than simply ATH replacement

• They are fully natural, non-synthetic, products
Information herein is intended for guidance only and given in good faith but without guarantee. LKAB Minerals is not responsible for the product’s suitability for a particular purpose. The only warranty LKAB Minerals makes is the express written warranty extended on the sale of its products.