QUICKER, QUIETER AND QUENCHING WITH SPECIALTY FILLERS

Dr. Chris DeArmitt FRSC

chris.dearmitt@lkabminerals.com
OUTLINE

• Introduction to LKAB Minerals (formerly Minelco)
• Magnetite – a multi-functional specialty filler
• Phlogopite MicaFort PW80 a new breakthrough grade
• Performance comparison in nylon and PP
• UltraCarb HMH – a natural mineral flame retardant
• Conclusions
PRESENTER

- KTH, Ytkemiska Institutet, Electrolux (Frigidaire) Stockholm, Electrolux Italy, BASF Germany, Hybrid Plastics, Phantom Plastics, Applied Minerals, LKAB Minerals
- Born in USA, grew up in the UK, 9 years in Sweden, 1 Italy, 4 Germany and now USA 6 years (American & Swedish citizen)
- Experienced in R&D, Marketing, Product Development, Sales
- Expertise in plastics, specialty minerals, materials
- World-class innovator (6 open innovation challenge wins, 14 patents)
- >30 articles, 6 book chapters, 3 encyclopedia chapters
- >30 conference presentations with multiple awards
THE LKAB GROUP IN BRIEF

- World leading producer of upgraded iron ore
- Delivered 25.5 Million MT in 2013, plan to grow to 37 Million MT
- Two underground mines in Kiruna and Malmberget and open pit mining in Svappavaara
- Producer of 90% of EU’s iron ore
- ~4,400 employees
- 30 companies in 15 countries
 - E.g. Drilling, Concrete, Explosives, Railway, Harbour, Construction.
- Turnover 2013: USD 3.2 Billion
We focus our R&D resources on mineral and application development in the areas of:

- **Civil Engineering and Construction**
- **Polymers and Coatings**
- **Refractory and Foundry**
MAGNiF – HIGH PURITY MAGNETITE
MAGNETITE PROCESSING
MAGNETITE ORE

1. Density 5.2 g cm$^{-3}$
2. Moh Hardness ~6
3. Semi-conductive
4. Thermally conductive
5. High specific heat capacity
6. Extremely pure

1. Sound deadening, weights
2. Solid surfaces
3. Anti-static, shielding, induction & microwave heatable, tracer
4. Improved productivity
5. Heat storage
6. Food contact approved
DENSITY ENHANCEMENT WITH MAGNIF

\[\rho_c = \frac{\rho_f \times \rho_p}{\rho_p m_f + \rho_f \times (1-m_f)} \]

- \(\rho_c \) - density of the composite
- \(\rho_f \) - density of the filler
- \(\rho_p \) - density of the polymer
- \(m_f \) - weight fraction of filler

Graph showing the relationship between density (g/cm³) and weight % filler for Talc in PP, Magnetite in PP, and Tungsten in Nylon.
MAGNETITE IN USE
PHLOGOPITE MICAFORT – VHAR REINFORCEMENT
PHLOGOPITE MICA

1. Chemically inert
2. Electrical insulator
3. Bronze colored
4. Stable to >900° C
5. Platy shape
6. Extremely pure (no quartz*)

1. Barrier
2. Dielectric
3. Pigment
4. FR applications
5. Reinforces in two directions, sound deadening
6. Food contact approved

* No detectable quartz within the limits of XRD (<0.1%)
ASPECT RATIO AND FLEXURAL MODULUS

SEM OF PHLOGOPITE MICAFORT PW80

Mag = 2.00 K X
EHT = 5.00 kV
WD = 12 mm

Detector = SE2
Photo No. = 685
MINERAL REINFORCEMENTS COMPARED

<table>
<thead>
<tr>
<th>Particle Dimensions (Malvern)</th>
<th>Calcined Clay</th>
<th>Wollastonite</th>
<th>Talc</th>
<th>Phlogopite MicaFort PW80</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{50}</td>
<td>3</td>
<td>3.5</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>D_{90}</td>
<td>10</td>
<td>13</td>
<td>40</td>
<td>95</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Reinforces in</td>
<td>2 directions</td>
<td>1 direction</td>
<td>2 directions</td>
<td>2 directions</td>
</tr>
</tbody>
</table>

In real parts platy fillers give superior strength and modulus plus low warpage.
Reinforcement Comparison in PA6

<table>
<thead>
<tr>
<th>Property</th>
<th>Talc 40%</th>
<th>Calcined Clay 40%</th>
<th>Wollastonite 40%</th>
<th>Phlogopite Mica 40%</th>
<th>GF 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Modulus (MPa)</td>
<td>7400</td>
<td>6120</td>
<td>5514</td>
<td>10370</td>
<td>11980</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>120</td>
<td>150</td>
<td>135</td>
<td>155</td>
<td>290</td>
</tr>
<tr>
<td>Tensile Modulus (MPa)</td>
<td>7470</td>
<td>6313</td>
<td>5450</td>
<td>11160</td>
<td>13215</td>
</tr>
<tr>
<td>Break Stress (MPa)</td>
<td>74</td>
<td>87</td>
<td>83</td>
<td>95</td>
<td>195</td>
</tr>
<tr>
<td>Break Strain (%)</td>
<td>2.8</td>
<td>6.4</td>
<td>8.4</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Unnotched Charpy (kJm(^{-2}))</td>
<td>28.5</td>
<td>80</td>
<td>No Break</td>
<td>29</td>
<td>79</td>
</tr>
<tr>
<td>Notched Charpy (kJm(^{-2}))</td>
<td>3.5</td>
<td>6.4</td>
<td>6.4</td>
<td>4.0</td>
<td>12.8</td>
</tr>
<tr>
<td>Shrinkage = (%)</td>
<td>0.65</td>
<td>1.31</td>
<td>1.06</td>
<td>0.58</td>
<td>0.1</td>
</tr>
<tr>
<td>Shrinkage (\parallel) (%)</td>
<td>0.97</td>
<td>1.66</td>
<td>1.64</td>
<td>0.87</td>
<td>0.98</td>
</tr>
<tr>
<td>Warpage (%)</td>
<td>0.32</td>
<td>0.35</td>
<td>0.58</td>
<td>0.29</td>
<td>0.88</td>
</tr>
</tbody>
</table>
REINFORCEMENT COMPARISON IN PA6

<table>
<thead>
<tr>
<th>Property</th>
<th>GF25% Talc15%</th>
<th>GF 25% Clay 15%</th>
<th>GF 25% Wollastonite 15%</th>
<th>GF 25% Phlogopite Mica 15%</th>
<th>GF 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Modulus (MPa)</td>
<td>9843</td>
<td>9350</td>
<td>9080</td>
<td>10550</td>
<td>11980</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>210</td>
<td>213</td>
<td>226</td>
<td>231</td>
<td>290</td>
</tr>
<tr>
<td>Tensile Modulus (MPa)</td>
<td>11400</td>
<td>9950</td>
<td>10100</td>
<td>12200</td>
<td>13215</td>
</tr>
<tr>
<td>Break Stress (MPa)</td>
<td>140</td>
<td>144</td>
<td>144</td>
<td>165</td>
<td>195</td>
</tr>
<tr>
<td>Break Strain (%)</td>
<td>2.4</td>
<td>3.4</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Unnotched Charpy (kJm⁻²)</td>
<td>52.3</td>
<td>43.6</td>
<td>50.3</td>
<td>60</td>
<td>79</td>
</tr>
<tr>
<td>Notched Charpy (kJm⁻²)</td>
<td>7.4</td>
<td>5.6</td>
<td>6.9</td>
<td>8.6</td>
<td>12.8</td>
</tr>
<tr>
<td>Shrinkage (°)</td>
<td>0.22</td>
<td>0.26</td>
<td>0.23</td>
<td>0.22</td>
<td>0.1</td>
</tr>
<tr>
<td>Shrinkage</td>
<td></td>
<td>(°)</td>
<td>0.91</td>
<td>0.99</td>
<td>1.04</td>
</tr>
<tr>
<td>Warpage (%)</td>
<td>0.69</td>
<td>0.73</td>
<td>0.81</td>
<td>0.59</td>
<td>0.88</td>
</tr>
</tbody>
</table>
PHLOGOPITE MICAFORT – IN PP
LKAB Minerals data from accredited external laboratory – PP Copolymer 65%, Impact Modifier 15%, Mineral 20%, Additives <1%
VHAR MICAFORT VS HAR TALC

LKAB Minerals data from accredited external laboratory – PP Copolymer 65%, Impact Modifier 15%, Mineral 20%, Additives <1%
VHAR MICAFORT VS HAR TALC

Flexural Modulus (MPa)

- 5% PW80 Mica
- 10% PW80 Mica
- 20% PW80 Mica
- 30% PW80 Mica
- 20% 10μm Talc
- 20% 20μm Talc
- 20% 45μm Talc

LKAB Minerals data from accredited external laboratory – PP Copolymer 65%, Impact Modifier 15%, Mineral 20%, Additives <1%
LKAB Minerals data from accredited external laboratory – PP Copolymer 65%, Impact Modifier 15%, Mineral 20%, Additives <1%
VHAR PHLOGOPITE MICAFORT

• Very high purity phlogopite mica as starting material

• State of the art wet grinding and classification for optimal aspect ratio and particle size control

• Excellent reinforcement alone or in combination with glass fiber

• The best solution for nylon, PP and other engineering thermoplastics, comparable to double the amount of talc

• Warpage control, superb electrical properties, scratch resistance and sound damping are other key advantages
ULTRACARB – NATURE’S OWN FLAME RETARDANT
HMH: A BLEND OF TWO MINERALS

Huntite: magnesium calcium carbonate

\[
\text{Mg}_3\text{Ca(CO}_3\text{)}_4 + 1 \text{kJ/g} \rightarrow 3\text{MgO} + \text{CaO} + 4\text{CO}_2
\]

Hydromagnesite: hydrated magnesium carbonate

\[
\text{Mg}_5\text{(CO}_3\text{)}_4\text{(OH)}_2\cdot4\text{H}_2\text{O} + 1 \text{kJ/g} \rightarrow 5\text{MgO} + 4\text{CO}_2 + 5\text{H}_2\text{O}
\]
THE THREE STAGE FR MECHANISM OF HMH
HYDROMAGNESITE & HUNTITE DECOMPOSITION

Residual Mass (%) vs. Temperature

- Hydromagnesite
- Huntite
- UltraCarb LH15

Temperature: 0 to 1470°F

Residual Mass: 0 to 100%
TOTAL HEAT RELEASE OF HMH AND ATH

Data retrieved from 50kW cone calorimeter
PARTICLE MORPHOLOGY

HMH

Huntite

ATH
NATURAL HMH VERSUS SYNTHETIC ATH

<table>
<thead>
<tr>
<th></th>
<th>HMH</th>
<th>ATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Platy</td>
<td>Spherical</td>
</tr>
<tr>
<td>FR activity range</td>
<td>220°C – 700°C</td>
<td>180°C – 280°C</td>
</tr>
<tr>
<td>Evaporation enthalpy</td>
<td>-1000 kJ/kg</td>
<td>-1000 kJ/kg</td>
</tr>
<tr>
<td>Water release</td>
<td>>220°C</td>
<td>>180°C</td>
</tr>
<tr>
<td>Cementicious char</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bulk density (at feeding)</td>
<td>0.3g/cm³ (0.3g/cm³)</td>
<td>0.6 g/cm³ (0.4g/cm³)</td>
</tr>
<tr>
<td>BET surface</td>
<td>10m²/g (15m²/g)</td>
<td>4m²/g (7m²/g)</td>
</tr>
<tr>
<td>Processing temperature</td>
<td><220°C @ 1 bar</td>
<td><180°C</td>
</tr>
<tr>
<td>High shear kneading</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
EVA + ULTRACARB LH3 + PLASTOMER

Ingredients
- 20.0% Elvax 265 A (EVA)
- 6.5% Lucene LC180 (Plastomer)
- 3.75% Compoline CO/LL (MAH)
- 6.5% Eltex PF6130 AA (LLDPE)
- 1.5% Silmaprocess AL 1142A (Processing aid)
- 0.75% Silmastab AE 1527 (Stabilizer)
- 61.00% UltraCarb LH3

Instructions
Feed polymers, additives and processing aids in the first hopper of a Buss Co-Kneader MX-30 and split feed the UltraCarb LH3 in port 1+2 and let it run at 600rpm and 15kg/h.

Properties
- Tensile Strength: 15 MPa
- Elongation @ Break: 276%
- Dispersion: very good
- LOI: 32.5
CONCLUSIONS

• Specialty minerals allow new levels of performance
• Magnetite has been used for decades but its full potential has not yet been tapped
• Established minerals like mica can still be innovative and are especially suited to automotive applications
• UltraCarb HMH is greener, less expensive and in some ways better than ATH and MDH
• One needs new ingredients to make better compounds!
CUSTOMER FEEDBACK

“It’s magic”
President of coatings company

“It blew everything else out of the water”
PhD scientist at leading engineering plastics company

“Significantly better than everything else”
Fortune 100 company

“I’m in awe of what this stuff can do”
PhD scientist at leading aesthetic products company
“A ship is safe in harbor, but that’s not what ships are for.”
— William G.T. Shedd
Information herein is intended for guidance only and given in good faith but without guarantee. LKAB Minerals is not responsible for the product’s suitability for a particular purpose. The only warranty LKAB Minerals makes is the express written warranty extended on the sale of its products.

THANK YOU! – QUESTIONS?